In this paper, we propose a novel accurate method for dead-reckoning of wheeled vehicles based only on an Inertial Measurement Unit (IMU). In the context of intelligent vehicles, robust and accurate dead-reckoning based on the IMU may prove useful to correlate feeds from imaging sensors, to safely navigate through obstructions, or for safe emergency stops in the extreme case of exteroceptive sensors failure. The key components of the method are the Kalman filter and the use of deep neural networks to dynamically adapt the noise parameters of the filter. The method is tested on the KITTI odometry dataset, and our dead-reckoning inertial method based only on the IMU accurately estimates 3D position, velocity, orientation of the vehicle and self-calibrates the IMU biases. We achieve on average a 1.10% translational error and the algorithm competes with top-ranked methods which, by contrast, use LiDAR or stereo vision.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    AI-IMU Dead-Reckoning


    Contributors:

    Published in:

    Publication date :

    2020-12-01


    Size :

    1571053 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Piloting & dead reckoning

    Shufeldt, H. H. | TIBKAT | 1970




    Adaptive dead reckoning algorithm

    Zhou, S. / Chen, Z. | British Library Online Contents | 1996


    EXTENDED DEAD RECKONING ACCURACY

    SAINI VINOD KUMAR / LAKHZOURI ABDELMONAEM / ZHENG BO et al. | European Patent Office | 2025

    Free access