This paper presents a novel application of various machine learning (ML)-based approaches towards prediction of path loss (PL) parameter for a smart campus environment. Measured data from [1] are used to train and evaluate the performance of popular ML techniques such as artificial neural network (ANN) and random forest (RF). Simulation results are presented to verify the PL prediction accuracy of the ML-based schemes. Further, a detailed comparison with the widely used empirical COST-231 Hata model demonstrates the superiority over conventional techniques thereby validating the suitability of employing ML for path loss prediction in challenging 5G wireless scenarios.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Path Loss Prediction in Smart Campus Environment: Machine Learning-based Approaches


    Contributors:


    Publication date :

    2020-05-01


    Size :

    159789 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Machine Learning Based SINR Prediction in Private Campus Networks

    Mallikarjun, Sachinkumar B. / Charan Kusumapani, Sai / Kuruvatti, Nandish P. et al. | IEEE | 2023


    Edge based Device using Machine Learning for Water Quality Management in a Smart Campus

    Meenalochani, M. / Hariharan, T. / Kumar, S. Vishnu | IEEE | 2024


    Visual Sensing-Based Path Loss Prediction Method

    Tian, Yixuan / Sun, Yutong / Yu, Li et al. | IEEE | 2024



    Machine Learning Approaches for Myers-Briggs Personality Prediction

    Santhosh, Sethulakshmi / M, Meenakshi / F, Avani et al. | IEEE | 2023