This paper presents a novel application of various machine learning (ML)-based approaches towards prediction of path loss (PL) parameter for a smart campus environment. Measured data from [1] are used to train and evaluate the performance of popular ML techniques such as artificial neural network (ANN) and random forest (RF). Simulation results are presented to verify the PL prediction accuracy of the ML-based schemes. Further, a detailed comparison with the widely used empirical COST-231 Hata model demonstrates the superiority over conventional techniques thereby validating the suitability of employing ML for path loss prediction in challenging 5G wireless scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Path Loss Prediction in Smart Campus Environment: Machine Learning-based Approaches


    Beteiligte:
    Singh, Harsh (Autor:in) / Gupta, Shivam (Autor:in) / Dhawan, Charchit (Autor:in) / Mishra, Amrita (Autor:in)


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    159789 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Based SINR Prediction in Private Campus Networks

    Mallikarjun, Sachinkumar B. / Charan Kusumapani, Sai / Kuruvatti, Nandish P. et al. | IEEE | 2023


    Edge based Device using Machine Learning for Water Quality Management in a Smart Campus

    Meenalochani, M. / Hariharan, T. / Kumar, S. Vishnu | IEEE | 2024


    Visual Sensing-Based Path Loss Prediction Method

    Tian, Yixuan / Sun, Yutong / Yu, Li et al. | IEEE | 2024


    Campus visitor parking demand prediction system based on deep learning algorithm

    LU QIN | Europäisches Patentamt | 2023

    Freier Zugriff

    Machine Learning Approaches for Myers-Briggs Personality Prediction

    Santhosh, Sethulakshmi / M, Meenakshi / F, Avani et al. | IEEE | 2023