The rapid development of traffic theory and information technology has provided diversified and large-scale traffic data resources for traffic research and urban traffic management. At the same time, these data also present many challenges, such as missing data and deviations in data collection. Many researchers have reported that inaccurate or incomplete measurements of traffic variables can be corrected based on either traditional traffic flow theory, which ignores the randomness of traffic, or are performed using machine learning methods, which emphasize data quantity, but do not make effective use of domain knowledge. This paper proposes a Traffic Factor State Network framework defined by traffic factors and their links to represent the relationships between traffic factors; this framework includes not only obvious traffic factors like volume and speed, but also hidden traffic factors such as the environmental impact factor, which is a variable used to represent complex road conditions. This variable is used to describe the influence of non-traffic flow parameters such as road condition and environmental factors, and is estimated by the EM (Expectation Maximization) algorithm based on historical data. This study used a high-order multivariate Markov model to implement the TFSN, which was then used to establish a stochastic model of speed and related factors. A large amount of historical data was used to calculate and calibrate the strength of the links between the model factors. Finally, a stochastic model of speed prediction was established. The verification results compared with actual cases demonstrate the validity and applicability of the proposed model.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Speed Prediction Based on a Traffic Factor State Network Model


    Contributors:
    Zhang, Weibin (author) / Feng, Yaoyao (author) / Lu, Kai (author) / Song, Yuhang (author) / Wang, Yinhai (author)


    Publication date :

    2021-05-01


    Size :

    3338528 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Highway traffic flow speed prediction method based on traffic factor state network

    ZHANG WEIBIN / FENG YAOYAO | European Patent Office | 2020

    Free access

    Traffic speed prediction device and traffic speed prediction method

    KIM NAM-HYUK | European Patent Office | 2025

    Free access

    Multi-factor high-speed traffic flow intelligent prediction method

    ZHAN ENNING / ZHU RUIXIN / LI CHAOFAN et al. | European Patent Office | 2023

    Free access

    Traffic network speed prediction method and system

    YAN JUN / HUO JIANJIE | European Patent Office | 2024

    Free access