Bayesian reconstruction and restoration methods require the choice of parameters related to variance in both stochastic image models and observed data. In practice these parameters, or their ratio, is often chosen heuristically. The authors present a method for joint maximum-likelihood (ML) estimation of these two parameters in transmission tomography, with emphasis on the X-ray//spl gamma/-ray dosage parameter. The estimation algorithm employs the expectation-maximization method, with the unobserved image as the complete data. The ML parameter estimator is shown to yield values which are practical for tomographic reconstruction, both with synthetic phantoms and real data.<>


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Maximum likelihood dosage estimation for Bayesian transmission tomography


    Contributors:
    Sauer, K.D. (author) / Bouman, C.A. (author)


    Publication date :

    1994-01-01


    Size :

    359682 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Maximum Likelihood Dosage Estimation for Bayesian Transmission Tomography

    Sauer, K. D. / Bouman, C. A. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994



    Maximum-likelihood sequence estimation in nonlinear optical transmission systems

    Sauer-Greff, W. / Dittrich, A. / Urbansky, R. et al. | IEEE | 2003


    Maximum-Likelihood Parameter-Estimation Algorithm

    Eldred, D. B. / Hamidi, M. / Rodriguez, G. | NTRS | 1986


    MAXIMUM-LIKELIHOOD GPS PARAMETER ESTIMATION

    Progri, Ilir F. | Online Contents | 2005