Bayesian reconstruction and restoration methods require the choice of parameters related to variance in both stochastic image models and observed data. In practice these parameters, or their ratio, is often chosen heuristically. The authors present a method for joint maximum-likelihood (ML) estimation of these two parameters in transmission tomography, with emphasis on the X-ray//spl gamma/-ray dosage parameter. The estimation algorithm employs the expectation-maximization method, with the unobserved image as the complete data. The ML parameter estimator is shown to yield values which are practical for tomographic reconstruction, both with synthetic phantoms and real data.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Maximum likelihood dosage estimation for Bayesian transmission tomography


    Beteiligte:
    Sauer, K.D. (Autor:in) / Bouman, C.A. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    359682 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Maximum Likelihood Dosage Estimation for Bayesian Transmission Tomography

    Sauer, K. D. / Bouman, C. A. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994



    Maximum-likelihood sequence estimation in nonlinear optical transmission systems

    Sauer-Greff, W. / Dittrich, A. / Urbansky, R. et al. | IEEE | 2003


    Maximum-Likelihood Parameter-Estimation Algorithm

    Eldred, D. B. / Hamidi, M. / Rodriguez, G. | NTRS | 1986


    MAXIMUM-LIKELIHOOD GPS PARAMETER ESTIMATION

    Progri, I. F. / Bromberg, M. C. / Michalson, W. R. | British Library Online Contents | 2005