Vehicle localization is the primary information needed for advanced tasks like navigation. This information is usually provided by the use of Global Positioning System (GPS) receivers. However, the low accuracy of GPS in urban environments makes it unreliable for further treatments. The combination of GPS data and additional sensors can improve the localization precision. In this article, a marking feature based vehicle localization method is proposed, able to enhance the localization performance. To this end, markings are detected using a multi-kernel estimation method from an on-vehicle camera. A particle filter is implemented to estimate the vehicle position with respect to the detected markings. Then, map-based markings are constructed according to an open source map database. Finally, vision-based markings and map-based markings are fused to obtain the improved vehicle fix. The results on road traffic scenarios using a public database show that our method leads to a clear improvement in localization accuracy.
Lane marking based vehicle localization using particle filter and multi-kernel estimation
2014-12-01
240617 byte
Conference paper
Electronic Resource
English
Lane marking aided vehicle localization
IEEE | 2013
|LANELOC: LANE MARKING BASED LOCALIZATION USING HIGHLY ACCURATE MAPS
British Library Conference Proceedings | 2013
|