Presented herein are systems and methods for performing federated learning across vehicles. A computing device having one or more processors coupled with memory can maintain, on the memory, a first machine learning (ML) comprising a first plurality of parameters for determining values identifying a characteristic of a vehicle function on at least one of a plurality of vehicles. The computing device can receive a second plurality of parameters generated by a second ML used by each respective vehicle. The computing device can update the first plurality of parameters of the first ML in accordance with the second plurality of parameters received from each respective vehicle of the plurality of vehicles. The computing device can transmit, to a vehicle, the updated first plurality of parameters to update the second plurality of parameters of the second ML on the vehicle.


    Access

    Download


    Export, share and cite



    Title :

    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS



    Publication date :

    2025-03-27


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / F01N GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL , Schalldämpfer oder Auspuffvorrichtungen für Gase von Kraft- und Arbeitsmaschinen oder von Kraftmaschinen allgemein / G05B Steuer- oder Regelsysteme allgemein , CONTROL OR REGULATING SYSTEMS IN GENERAL / G07C TIME OR ATTENDANCE REGISTERS , Zeit- oder Anwesenheitskontrollgeräte



    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS

    CHELLAPANDI VISHNU PANDI / BORHAN HOSEINALI / SUPPLEE JOSHUA EDWARD | European Patent Office | 2025

    Free access

    Federated Learning in Vehicular Networks

    Elbir, Ahmet M. / Soner, Burak / Coleri, Sinem et al. | IEEE | 2022


    On Vehicular Data Aggregation in Federated Learning

    Levente Alekszejenkó / Tadeusz Dobrowiecki | DOAJ | 2024

    Free access

    Clustered Vehicular Federated Learning: Process and Optimization

    Taik, Afaf / Mlika, Zoubeir / Cherkaoui, Soumaya | IEEE | 2022


    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Sultana, Shirin / Hossain, Jahin / Billah, Maruf et al. | ArXiv | 2023

    Free access