Presented herein are systems and methods for performing federated learning across vehicles. A computing device having one or more processors coupled with memory can maintain, on the memory, a first machine learning (ML) comprising a first plurality of parameters for determining values identifying a characteristic of a vehicle function on at least one of a plurality of vehicles. The computing device can receive a second plurality of parameters generated by a second ML used by each respective vehicle. The computing device can update the first plurality of parameters of the first ML in accordance with the second plurality of parameters received from each respective vehicle of the plurality of vehicles. The computing device can transmit, to a vehicle, the updated first plurality of parameters to update the second plurality of parameters of the second ML on the vehicle.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS


    Beteiligte:

    Erscheinungsdatum :

    27.03.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / F01N GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL , Schalldämpfer oder Auspuffvorrichtungen für Gase von Kraft- und Arbeitsmaschinen oder von Kraftmaschinen allgemein / G05B Steuer- oder Regelsysteme allgemein , CONTROL OR REGULATING SYSTEMS IN GENERAL / G07C TIME OR ATTENDANCE REGISTERS , Zeit- oder Anwesenheitskontrollgeräte



    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS

    CHELLAPANDI VISHNU PANDI / BORHAN HOSEINALI / SUPPLEE JOSHUA EDWARD | Europäisches Patentamt | 2025

    Freier Zugriff

    Federated Learning in Vehicular Networks

    Elbir, Ahmet M. / Soner, Burak / Coleri, Sinem et al. | IEEE | 2022


    Clustered Vehicular Federated Learning: Process and Optimization

    Taik, Afaf / Mlika, Zoubeir / Cherkaoui, Soumaya | IEEE | 2022


    On Vehicular Data Aggregation in Federated Learning

    Levente Alekszejenkó / Tadeusz Dobrowiecki | DOAJ | 2024

    Freier Zugriff

    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Sultana, Shirin / Hossain, Jahin / Billah, Maruf et al. | ArXiv | 2023

    Freier Zugriff