Presented herein are systems and methods for performing federated learning across vehicles. A computing device having one or more processors coupled with memory can maintain, on the memory, a first machine learning (ML) comprising a first plurality of parameters for determining values identifying a characteristic of a vehicle function on at least one of a plurality of vehicles. The computing device can receive a second plurality of parameters generated by a second ML used by each respective vehicle. The computing device can update the first plurality of parameters of the first ML in accordance with the second plurality of parameters received from each respective vehicle of the plurality of vehicles. The computing device can transmit, to a vehicle, the updated first plurality of parameters to update the second plurality of parameters of the second ML on the vehicle.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS


    Weitere Titelangaben:

    FÖDERIERTES LERNEN ZUR STEUERUNG UND ÜBERWACHUNG VON FUNKTIONEN IN FAHRZEUGEINSTELLUNGEN
    APPRENTISSAGE FÉDÉRÉ POUR DES COMMANDES ET LA SURVEILLANCE DE FONCTIONS DANS DES RÉGLAGES DE VÉHICULE


    Beteiligte:

    Erscheinungsdatum :

    09.04.2025


    Medientyp :

    Patent


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    IPC:    G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion



    FEDERATED LEARNING FOR CONTROLS AND MONITORING OF FUNCTIONS IN VEHICULAR SETTINGS

    CHELLAPANDI VISHNU PANDI / BORHAN HOSEINALI / SUPPLEE JOSHUA EDWARD | Europäisches Patentamt | 2025

    Freier Zugriff

    Federated Learning in Vehicular Networks

    Elbir, Ahmet M. / Soner, Burak / Coleri, Sinem et al. | IEEE | 2022


    On Vehicular Data Aggregation in Federated Learning

    Levente Alekszejenkó / Tadeusz Dobrowiecki | DOAJ | 2024

    Freier Zugriff

    Clustered Vehicular Federated Learning: Process and Optimization

    Taik, Afaf / Mlika, Zoubeir / Cherkaoui, Soumaya | IEEE | 2022


    Blockchain-Enabled Federated Learning Approach for Vehicular Networks

    Sultana, Shirin / Hossain, Jahin / Billah, Maruf et al. | ArXiv | 2023

    Freier Zugriff