An autonomous vehicle uses machine learning based models to predict hidden context attributes associated with traffic entities. The system uses the hidden context to predict behavior of people near a vehicle in a way that more closely resembles how human drivers would judge the behavior. The system determines an activation threshold value for a braking system of the autonomous vehicle based on the hidden context. The system modifies a world model based on the hidden context predicted by the machine learning based model. The autonomous vehicle is safely navigated, such that the vehicle stays at least a threshold distance away from traffic entities.


    Access

    Download


    Export, share and cite



    Title :

    NEURAL NETWORK BASED NAVIGATION OF AUTONOMOUS VEHICLES THROUGH TRAFFIC ENTITIES


    Additional title:

    NEURALE NETZWERKBASIERTE NAVIGATION VON AUTONOMEN FAHRZEUGEN ÜBER VERKEHRSENTITÄTEN
    NAVIGATION BASÉE SUR UN RÉSEAU NEURONAL DE VÉHICULES AUTONOMES PAR L'INTERMÉDIAIRE D'ENTITÉS DE TRAFIC


    Contributors:

    Publication date :

    2023-02-08


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / B60W CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION , Gemeinsame Steuerung oder Regelung von Fahrzeug-Unteraggregaten verschiedenen Typs oder verschiedener Funktion / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    NEURAL NETWORK BASED NAVIGATION OF AUTONOMOUS VEHICLES THROUGH TRAFFIC ENTITIES

    ANTHONY SAMUEL | European Patent Office | 2020

    Free access



    PROBABILISTIC NEURAL NETWORK FOR PREDICTING HIDDEN CONTEXT OF TRAFFIC ENTITIES FOR AUTONOMOUS VEHICLES

    MAAT JACOB REINIER / ANTHONY SAMUEL ENGLISH | European Patent Office | 2020

    Free access

    Probabilistic neural network for predicting hidden context of traffic entities for autonomous vehicles

    MAAT JACOB REINIER / ANTHONY SAMUEL ENGLISH | European Patent Office | 2022

    Free access