The invention provides a traffic flow prediction method based on a graph convolutional network, and the method comprises the steps: training a space-time cluster prediction model through the traffic flow data of historical specific time steps of all traffic nodes in a traffic network graph, so as to predict the traffic flow of a future target time step, and specifically, carrying out the training of a time-space cluster prediction model through employing a convolutional layer, mapping the preprocessed traffic flow data to a feature space to obtain original features and an original feature map of the traffic flow data; extracting a spatial dependency relationship implied in the traffic flow data by using a self-attention-based space-time diagram cluster convolution module to obtain a corresponding feature representation; capturing a time dependency relationship of the traffic flow data by using a gating timing sequence convolutional network based on a gating mechanism and expansion convolution to obtain a corresponding feature representation; and predicting the traffic flow of a future target time step based on the feature representation of the spatial dependency relationship and the time dependency relationship of the historical specific time step. According to the method, external information related to time is introduced, so that the prediction accuracy is improved.

    本申请提供了一种基于图卷积网络的交通流量预测方法,包括:使用交通网络图中各交通节点的历史特定时间步的交通流量数据,训练时空簇预测模型,以预测未来目标时间步的交通流量,具体的:利用卷积层,将预处理后的交通流量数据映射至特征空间,以得到交通流量数据的原始特征和原始特征图;利用基于自注意力的时空图簇卷积模块提取交通流量数据中隐含的空间依赖关系,得到相应的特征表示;利用基于门控机制和扩张卷积的门控时序卷积网络捕获交通流量数据的时间依赖关系,得到相应的特征表示;基于历史特定时间步的空间依赖关系和时间依赖关系的特征表示,预测未来目标时间步的交通流量。所述方法通过引入时间相关的外部信息,提升预测的准确性。


    Access

    Download


    Export, share and cite



    Title :

    Traffic flow prediction method based on graph convolutional network


    Additional title:

    一种基于图卷积网络的交通流量预测方法


    Contributors:
    XU HUI (author) / MENG FANYU (author) / REN QIANQIAN (author) / LYU XINGFENG (author) / LIU SIJIA (author)

    Publication date :

    2025-02-18


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen / G06Q Datenverarbeitungssysteme oder -verfahren, besonders angepasst an verwaltungstechnische, geschäftliche, finanzielle oder betriebswirtschaftliche Zwecke, sowie an geschäftsbezogene Überwachungs- oder Voraussagezwecke , DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES



    Space-time ARMA graph convolutional network traffic flow prediction method

    CAO YANG / XIAO PEICHENG / SHEN QINQIN et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method based on cyclic attention coupled graph convolutional network

    CHEN LING / CHEN WEIQI | European Patent Office | 2020

    Free access


    Traffic flow prediction method based on multimode dynamic memory graph convolutional network

    HUANG XIAOGE / YANG WENZHUO / ZHOU ENZHOU et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method based on adaptive dynamic fusion graph convolutional network

    ZHANG SHUAI / YU WANGZHI / LEE HAE KWANG et al. | European Patent Office | 2024

    Free access