The invention provides a space-time ARMA graph convolutional network traffic flow prediction method, which comprises the following steps: collecting traffic flow data recorded by a traffic network sensor, preprocessing the traffic flow data, establishing a data set, and dividing the data set into a training set, a verification set and a test set; constructing a spatial adjacency matrix according to the adjacent relation of the traffic sensors; extracting time characteristics in the traffic flow data by using a gating circulation unit; extracting spatial features by using a graph neural network based on an ARMA filter; and training the space-time ARMA graph convolutional network by using the training set, selecting model hyper-parameters by using the verification set, and evaluating the prediction precision of the model by using the test set. By constructing the space-time ARMA graph convolutional network, the space features and the time features in the traffic flow data are effectively extracted, and the prediction precision of the model is improved.

    本发明提供了一种时空ARMA图卷积网络交通流预测方法,步骤如下:收集交通路网传感器记录的交通流数据,对交通流数据进行预处理,建立数据集,并将其划分为训练集、验证集和测试集;根据交通传感器相邻关系构造空间邻接矩阵;使用门控循环单元提取交通流数据中的时间特征;使用基于ARMA过滤器的图神经网络提取空间特征;使用训练集训练时空ARMA图卷积网络,使用验证集选择模型超参数,使用测试集评估模型的预测精度。本发明通过构建时空ARMA图卷积网络,有效提取了交通流数据中的空间特征和时间特征,提高了模型的预测精度。


    Access

    Download


    Export, share and cite



    Title :

    Space-time ARMA graph convolutional network traffic flow prediction method


    Additional title:

    一种时空ARMA图卷积网络交通流预测方法


    Contributors:
    CAO YANG (author) / XIAO PEICHENG (author) / SHEN QINQIN (author) / SHI QUAN (author) / ZHAI ZHIPENG (author) / WU LING (author) / LU SIYUAN (author) / CAO CHENYANG (author)

    Publication date :

    2024-07-05


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS / G06N COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS , Rechnersysteme, basierend auf spezifischen Rechenmodellen



    Space-time adaptive dynamic graph convolutional network traffic flow prediction method

    CUI WENTIAN / LOU JUNGANG / SHEN QING et al. | European Patent Office | 2024

    Free access

    Traffic flow prediction method and system of attention time-space synchronization graph convolutional network

    XIA DAWEN / WEI XIAODUO / LI HUAQING et al. | European Patent Office | 2023

    Free access

    Multi-view fusion space-time dynamic graph convolutional network urban traffic flow prediction method

    YUAN GUAN / ZHAO WENZHU / ZHANG YANMEI et al. | European Patent Office | 2023

    Free access


    Urban traffic flow space-time prediction scheme based on graph convolutional neural network

    ZHANG RONGQING / WANG HANQIU / LI BING | European Patent Office | 2021

    Free access