The embodiment of the invention relates to an efficient anomaly recognition method on sparse trajectory data. The method comprises the following steps: constructing a hierarchical pattern tree by using a first algorithm based on all event patterns; and based on the hierarchical mode tree, calculating whether the track mode of the traffic track T is matched with any event mode by using a second algorithm. According to the embodiment of the invention, the event mode behind the event is compressed through the hierarchical mode tree method. Upon checking whether an upcoming traffic trajectory is related to an event pattern, the calculation may be stopped in advance according to a hierarchical pattern tree. The MTTD time of FDM is reduced through construction of a hierarchical mode tree and a rapid matching mode, and the calculation cost is reduced. The accelerated FDM calculation efficiency is very high, a large amount of trajectory data can be effectively processed, and instant response can be made in real time.

    本公开实施例是关于一种在稀疏轨迹数据上的高效异常识别方法。该方法包括:基于所有事件模式,利用第一算法构建分层模式树;基于所述分层模式树,利用第二算法计算交通轨迹T的轨迹模式是否与任一事件模式匹配。本公开实施例通过分层模式树方法压缩事件背后的事件模式。在检查即将到来的交通轨迹是否与事件模式相关时,可以根据分层模式树提前停止计算。通过构建分层模式树和快速匹配的方式减少FDM的MTTD时间,减少计算的成本。加速后的FDM的计算效率很高,能够有效处理大量轨迹数据,能够对实时做出即时响应。


    Access

    Download


    Export, share and cite



    Title :

    Efficient anomaly identification method on sparse trajectory data


    Additional title:

    一种在稀疏轨迹数据上的高效异常识别方法


    Contributors:
    HAN XIAOLIN (author) / HU XIURUI (author) / MA CHENHAO (author) / SHANG XUEQUN (author)

    Publication date :

    2024-06-21


    Type of media :

    Patent


    Type of material :

    Electronic Resource


    Language :

    Chinese


    Classification :

    IPC:    G06F ELECTRIC DIGITAL DATA PROCESSING , Elektrische digitale Datenverarbeitung / G08G Anlagen zur Steuerung, Regelung oder Überwachung des Verkehrs , TRAFFIC CONTROL SYSTEMS



    Trajectory anomaly detection system and online trajectory anomaly detection method

    LI WENBIN / YAO DI / BI JINGPING | European Patent Office | 2024

    Free access

    Data-Driven Method for Detecting Flight Trajectory Deviation Anomaly

    Guo, Ziyi / Yin, Chang / Zeng, Weili et al. | AIAA | 2022


    High-speed target sparse flight trajectory data prediction method and system

    CHU RUIJUAN / FAN XUNCHI / REN JUNKANG et al. | European Patent Office | 2025

    Free access

    Hybrid Group Anomaly Detection for Sequence Data: Application to Trajectory Data Analytics

    Belhadi, Asma / Djenouri, Youcef / Srivastava, Gautam et al. | IEEE | 2022


    Low-Thrust Trajectory Optimization Method Considering Stochastic Operational Anomaly

    Ozaki, Naoya / Funase, Ryu / Nakasuka, Shinichi | AIAA | 2014