This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control.

    Design/methodology/approach

    In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE).

    Findings

    According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance.

    Originality/value

    While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    PSO and GA tuned conventional and fractional order PID controllers for quadrotor control


    Contributors:

    Published in:

    Publication date :

    2021-08-17


    Size :

    1 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Towards the Development of Fractional-Order Flight Controllers for the Quadrotor

    Dong, Wei / Chen, Jie / Yang, Jiteng et al. | British Library Conference Proceedings | 2016


    Fractional Order PID Controller for Quadrotor

    Yaghi, Murad A. / Shehadeh, AbdelHafez / Tutunji, Tarek A. | IEEE | 2023


    Nonlinear Controllers for Hybrid UAV: Biplane Quadrotor

    Dalwadi, Nihal / Deb, Dipankar / Ozana, Stepan | Springer Verlag | 2023


    Quadrotor UAV Trajectory Tracking Control Based on Fractional-Order and S-Plane

    Li, Jiacheng / Chen, Pengyun / Zhang, Guobing et al. | Springer Verlag | 2023