Automated Guided Vehicles (AGVs) are the fastest commercially available application of unmanned driving technology, and the research significance of unmanned vehicle technology remains substantial. This paper investigates the driving mode of AGVs and proposes a method to extend the kinematic model of center-driven unmanned vehicles to front-wheel drive. This change in driving force enables unmanned vehicles to achieve faster tracking and higher consistency, solving the problems of long tracking time and insufficient accuracy in complex environments and reducing production costs. By analyzing the posture relationship of the unmanned vehicle system during movement, we established a posture error system to analyze the trajectory tracking problem. Utilizing Lyapunov stability theory and the concept of backstepping, we designed a control scheme that uses linear velocity and heading angular velocity as variables for the posture error system. This control scheme aims to stabilize the system and achieve synchronized trajectory tracking control of the unmanned vehicle. The impact of control parameters in the controller on tracking performance is also discussed. The final experimental simulation results show that the system error stabilizes, and the unmanned vehicle accurately follows the predetermined trajectory, verifying the feasibility of our proposed method and control scheme.


    Access

    Download


    Export, share and cite



    Title :

    Trajectory Tracking Control of Unmanned Vehicles via Front-Wheel Driving


    Contributors:
    Jie Zhou (author) / Can Zhao (author) / Yunpei Chen (author) / Kaibo Shi (author) / Eryang Chen (author) / Ziqi Luo (author)


    Publication date :

    2024




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    Trajectory Tracking Control for Micro Unmanned Aerial Vehicles

    Zhai, Rui Yong ;Zhang, Wen Dong ;Zhou, Zhao Ying | Trans Tech Publications | 2013


    Trajectory tracking control method for four-wheel steering unmanned vehicle

    XIONG HUIYUAN / LIU DELIANG / TAN XIAOJUN et al. | European Patent Office | 2022

    Free access

    Trajectory tracking control method based on two-wheel differential driving

    WU CHUN / CHEN XI | European Patent Office | 2024

    Free access

    Trajectory Tracking Control of Highly Maneuverable Fixed-Wing Unmanned Aerial Vehicles

    Hernandez Ramirez, Juan Carlos / Nahon, Meyer | AIAA | 2020