Aiming at reducing joint velocity jumps caused by an unexpected joint-locked failure during space manipulator on-orbit operations without shutting down manipulator, trajectory optimization strategy considering the unexpectedness characteristics of joint-locked failure is proposed in the paper, which can achieve velocity jumps reduction in both operation space and joint space simultaneously. In the strategy, velocity in operation space concerning task completion directly is treated as equality constraints, and velocity in joint space concerning motion performance is treated as objective function. Global compensation vector which consists of coefficient, gradient of manipulability, and orthogonal matrix of null space is constructed to minimize the objective function. For each particular failure time, unique optimal coefficient can be obtained when the objective function is minimal. As a basis, a method for optimal coefficient function fitting is proposed based on a priori failure information (possible failure time and the corresponding optimal coefficient) to guarantee the unexpectedness characteristics of joint-locked failure. Simulations are implemented to validate the efficiency of trajectory optimization strategy in reducing velocity jumps in both joint space and operation space. And the feasibility of coefficient function is also verified in reducing velocity jump no matter when joint-locked failure occurs.
Trajectory Optimization for Velocity Jumps Reduction considering the Unexpectedness Characteristics of Space Manipulator Joint-Locked Failure
2016
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Unexpectedness prediction sensitivity determination apparatus
European Patent Office | 2017
|Halt Optimization Strategy for a Space Manipulator with a Joint-Locked Failure
DOAJ | 2020
|Unexpectedness prediction sensitivity determination apparatus
European Patent Office | 2016
|Surprise and Unexpectedness in Flying: Factors and Features
British Library Conference Proceedings | 2005
|