Aiming at reducing joint velocity jumps caused by an unexpected joint-locked failure during space manipulator on-orbit operations without shutting down manipulator, trajectory optimization strategy considering the unexpectedness characteristics of joint-locked failure is proposed in the paper, which can achieve velocity jumps reduction in both operation space and joint space simultaneously. In the strategy, velocity in operation space concerning task completion directly is treated as equality constraints, and velocity in joint space concerning motion performance is treated as objective function. Global compensation vector which consists of coefficient, gradient of manipulability, and orthogonal matrix of null space is constructed to minimize the objective function. For each particular failure time, unique optimal coefficient can be obtained when the objective function is minimal. As a basis, a method for optimal coefficient function fitting is proposed based on a priori failure information (possible failure time and the corresponding optimal coefficient) to guarantee the unexpectedness characteristics of joint-locked failure. Simulations are implemented to validate the efficiency of trajectory optimization strategy in reducing velocity jumps in both joint space and operation space. And the feasibility of coefficient function is also verified in reducing velocity jump no matter when joint-locked failure occurs.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Optimization for Velocity Jumps Reduction considering the Unexpectedness Characteristics of Space Manipulator Joint-Locked Failure


    Beteiligte:
    Qingxuan Jia (Autor:in) / Tong Li (Autor:in) / Gang Chen (Autor:in) / Hanxu Sun (Autor:in) / Jian Zhang (Autor:in)


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Unexpectedness prediction sensitivity determination apparatus

    HIRAMATSU MACHIKO / SUNDA TAKASHI | Europäisches Patentamt | 2017

    Freier Zugriff

    Halt Optimization Strategy for a Space Manipulator with a Joint-Locked Failure

    Gang Chen / Lanpu Li / Yingzhuo Fu et al. | DOAJ | 2020

    Freier Zugriff

    Unexpectedness prediction sensitivity determination apparatus

    HIRAMATSU MACHIKO / SUNDA TAKASHI | Europäisches Patentamt | 2016

    Freier Zugriff

    Surprise and Unexpectedness in Flying: Factors and Features

    Kochan / Breiter / Jentsch | British Library Conference Proceedings | 2005