The joint optimization of fleet size and task allocation presents a critical challenge in deploying Unmanned Aerial Vehicles (UAVs) for time-sensitive missions such as emergency logistics. Conventional approaches often rely on pre-determined fleet sizes or computationally intensive centralized optimizers, which can lead to suboptimal performance. To address this gap, this paper proposes a novel two-stage hierarchical framework that integrates the Grey Wolf Optimizer (GWO) with the Consensus-Based Bundle Algorithm (CBBA). At the strategic level, the GWO determines the optimal number of UAVs by minimizing a comprehensive cost function that balances mission efficiency and operational costs. Subsequently, at the tactical level, the CBBA performs decentralized, real-time task allocation for the optimally sized fleet. We validated our GWO-CBBA framework through extensive simulations against three benchmarks: a standard CBBA with a fixed fleet, a centralized Particle Swarm Optimization (PSO) approach, and a Greedy Heuristic algorithm. The results are compelling: our framework demonstrates superior performance across all key metrics, reducing the overall scheduling cost by 13.2–36.5%, minimizing UAV mileage cost and significantly decreasing total task waiting time. This work provides a robust and efficient solution that effectively balances operational costs with service quality for dynamic multi-UAV scheduling problems.
A Two-Stage Optimization Framework for UAV Fleet Sizing and Task Allocation in Emergency Logistics Using the GWO and CBBA
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Event Driven CBBA with Reduced Communication
IEEE | 2025
|Fleet Sizing and Empty Freight Car Allocation
British Library Conference Proceedings | 2018
|On a fleet sizing and allocation problem
Tema Archive | 1977
|