Urban wind, and particularly turbulence present in the roughness zone near structures, poses a critical challenge for next-generation drones. Complex flow patterns induced by large buildings produce significant disturbances that the vehicle must reject at low altitudes. Traditional turbulence models, such as the von Kármán model, underestimate these localized effects, compromising flight safety. To address this gap, we integrate high-resolution time and spatially varying urban wind fields from Large Eddy Simulations into a flight dynamics simulation framework using vehicle plant models based on configuration geometry and commonly deployed Ardupilot control laws, enabling a detailed analysis of drone responses in urban environments. Our results reveal that high-risk flight zones can be systematically identified by correlating drone response metrics with the spatial distribution of Turbulent Kinetic Energy (TKE). Notably, maximum g-loads coincide with abrupt TKE transitions, underscoring the critical impact of even short-lived wind fluctuations. By coupling advanced computational fluid dynamics with a real-time vehicle dynamics model, this work establishes a foundational methodology for designing safer and more reliable advanced air mobility platforms in complex urban airspaces. This work distinguishes itself from the existing literature by incorporating an efficient vortex lattice aerodynamic solver that supports arbitrary fixed-wing drone platforms through the simple specification of planform geometry and mass properties, and operating full-flights throughout a time and spatially varying urban wind field. This framework enables a robust assessment of stability and control for a wide range of fixed-wing drone platforms operating in urban environments, with delivery drones serving as a representative and practical use case.
Urban Wind Field Effects on the Flight Dynamics of Fixed-Wing Drones
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0