Overfitting in a deep neural network leads to low recommendation precision and high loss. To mitigate these issues in a deep neural network-based recommendation algorithm, we propose a recommendation algorithm, LG-DropEdge, joint light graph convolutional network, and the DropEdge. First, to reduce the cost of data storage and calculation, we initialize user and item embedding in the embedding layer of the algorithm. Then, to obtain high-order interaction relationships to optimize the embedding representation, we enrich the embedding by injecting high-order connectivity relationships in the convolutional layer. In the training phase, DropEdge is used to randomly discard connected relationships (interaction edges) to prevent overfitting. Finally, to reasonably aggregate the embedding results learned on all layers, the weighted average is expressed as the final embedding, so that users can make preferences in the item. We conduct experiments on three public datasets, using two performance indicators; namely, recall and NDCG, are used for evaluation. For the Gowalla dataset, compared with the optimal baseline method, recall@20 and ndcg@20 increased by 2.53% and 2.39%, respectively. For the Yelp2018 dataset, recall@20 and ndcg@20 increased by 6.17% and 5.58%, respectively. For the Amazon-book dataset, recall@20 and ndcg@20 increased by 4.82% and 4.67%, respectively. The results show that LG-DropEdge can not only reduce the degree of neural network overfitting but also improve the recommended results’ precision.


    Access

    Download


    Export, share and cite



    Title :

    Research on Recommendation Algorithm of Joint Light Graph Convolution Network and DropEdge


    Contributors:
    Haicheng Qu (author) / Jiangtao Guo (author) / Yanji Jiang (author)


    Publication date :

    2022




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown





    Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction

    Guo, Kan / Hu, Yongli / Qian, Zhen et al. | IEEE | 2021


    Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction

    Sun, Yanfeng / Jiang, Xiangheng / Hu, Yongli et al. | IEEE | 2022


    Periodic adaptive graph convolution circulation network traffic flow prediction method

    WANG BIN / LONG ZHENDAN / SHENG JINFANG et al. | European Patent Office | 2023

    Free access

    Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting

    Liu, Kun / Zhu, Yifan / Wang, Xiao et al. | Transportation Research Record | 2024