Obtaining additional energy due to the deep utilization of the internal combustion engine (ICE) heat losses al-lows saving fuel used for the operation of the ship's power plant. This accordingly leads to a reduction of the emissions of harmful substances into the atmosphere, contributes to meet the more stringent standards of the International Maritime Organization (IMO) governing the limits of these emissions. The study aims to develop the system of complex exhaust gas cleaning for an internal combustion engine (ICE). For solving the tasks in the technology of proposed method there were 6 stages of technological process envisaged. Based on experimental and theoretical studies, a setup for complex exhaust gas cleaning using a cyclone and the effect of "microexplosions" of a water-fuel emulsion (WFE) droplet was developed. It has been established that as a result of activated WFE combustion we obtain at the engine outlet exhaust gases of a corresponding composition with a reduced amount of toxic ingredients down to 35 % and below and most importantly – an equimolar ratio of NO2 /NO to NOx. Experimental studies have shown that in the condensate acid under these conditions, an average concentration of about 57 % is established, which ensures a sharp increase in the absorption of SO2 and NOx. The presence of an equimolar (or almost this) NO2 /NO ratio in gases ensures the passivation of the condensation surface in exhaust gas boiler (EGB) from carbon steel. This ensures a sharp decrease in the low-temperature corrosion intensity, an increase in the operating reliability of condensation surfaces and the possibility of a sharp increase in the engine exhaust gas utilization depth to 80...90 °C instead of 160 °C. For the final gas cleaning, it was proposed to install a venturi scrubber and a cyclone-absorber on the gas path of ICE. Based on experimental studies, it has been established that the installation of a condensation heating surface in the EGB reduces the NOx content in gases by 55 %, SO2 - by 50 %, and the content of solid particles - by 3 times. The developed complex system can be used to clean the ICE gases to the level recommended by IMO.


    Access

    Download


    Export, share and cite



    Title :

    APPLICATION THE CYCLONE AND EFFECT OF "MICROEXPLOSIONS" DROPS OF WATER-FUEL EMULSION FOR COMPLEX CLEANING OF EXHAUST GASES OF INTERNAL COMBUSTION ENGINE




    Publication date :

    2019




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown




    IMPROVING ENVIRONMENTAL INDICATORS OF INTERNAL COMBUSTION ENGINE BY USING SCRUBBER TECHNOLOGIES AND EFFECT OF "MICROEXPLOSIONS" DROPS OF WATER-FUEL EMULSION

    Виктория Сергеевна Корниенко / Роман Николаевич Радченко / Юрий Георгиевич Щербак | DOAJ | 2019

    Free access

    REDUCTION OF EMISSIONS FROM INTERNAL COMBUSTION ENGINE IN WATER-FUEL EMULSIONS COMBUSTION USING THE "MICROEXPLOSIONS" EFFECT

    Виктория Сергеевна Корниенко / Роман Николаевич Радченко / Юрий Георгиевич Щербак | DOAJ | 2019

    Free access

    INTERNAL COMBUSTION ENGINE METHOD FOR CLEANING EXHAUST FROM AN INTERNAL COMBUSTION ENGINE AND METHOD FOR REFITTING AN INTERNAL COMBUSTION ENGINE

    AKROUR MATTHIEU / SCHAEPPER DANIEL / KISHORE NANDA SANGRAM | European Patent Office | 2017

    Free access


    TuV1 Femtosecond Laser-Induced Microexplosions in Transparent Materials

    IEEE | British Library Conference Proceedings | 2001