Due to their high efficiency and real-time performance, discriminant correlation filtering (DCF) trackers have been widely applied in unmanned aerial vehicle (UAV) tracking. However, the robustness of existing trackers is still poor when facing complex scenes, such as background clutter, occlusion, camera motion, and scale variations. In response to this problem, this paper proposes a robust UAV target tracking algorithm based on saliency detection (SDBCF). Using saliency detection methods, the DCF tracker is optimized in three aspects to enhance the robustness of the tracker in complex scenes: feature fusion, filter-model construct, and scale-estimation methods improve. Firstly, this article analyzes the features from both spatial and temporal dimensions, evaluates the representational and discriminative abilities of different features, and achieves adaptive feature fusion. Secondly, this paper constructs a dynamic spatial regularization term using a mask that fits the target, and integrates it with a second-order differential regularization term into the DCF framework to construct a novel filter model, which is solved using the ADMM method. Next, this article uses saliency detection to supervise the aspect ratio of the target, and trains a scale filter in the continuous domain to improve the tracker’s adaptability to scale variations. Finally, comparative experiments were conducted with various DCF trackers on three UAV datasets: UAV123, UAV20L, and DTB70. The DP and AUC scores of SDBCF on the three datasets were (71.5%, 58.9%), (63.0%, 57.8%), and (72.1%, 48.4%), respectively. The experimental results indicate that SDBCF achieves a superior performance.
Robust UAV Target Tracking Algorithm Based on Saliency Detection
2025
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Robust visual saliency detection method for infrared small target
British Library Online Contents | 2015
|Infrared small target detection based on visual saliency
IEEE | 2016
|Edge-Detection Algorithm Based on Visual Saliency
British Library Online Contents | 2014
|Contextual-based top-down saliency feature weighting for target detection
British Library Online Contents | 2016
|SAGE Publications | 2021
|