This paper introduces a novel method of lane-change and lane-keeping detection and prediction of surrounding vehicles based on Convolutional Neural Network (CNN) classification approach. Context, interaction, vehicle trajectories, and scene appearance are efficiently combined into a single RGB image that is fed as input for the classification model. Several state-of-the-art classification-CNN models of varying complexity are evaluated to find out the most suitable one in terms of anticipation and prediction. The model has been trained and evaluated using the PREVENTION dataset, a specific dataset oriented to vehicle maneuver and trajectory prediction. The proposed model can be trained and used to detect lane changes as soon as they are observed, and to predict them before the lane change maneuver is initiated. Concurrently, a study on human performance in predicting lane-change maneuvers using visual inputs has been conducted, so as to establish a solid benchmark for comparison. The empirical study reveals that humans are able to detect the 83.9% of lane changes on average 1.66 seconds in advance. The proposed automated maneuver detection model increases anticipation by 0.43 seconds and accuracy by 2.5% compared to human results, while the maneuver prediction model increases anticipation by 1.03 seconds with an accuracy decrease of only 0.5%. ; JRC.B.6 - Digital Economy


    Access

    Download


    Export, share and cite



    Title :

    Vehicle Lane Change Prediction on Highways Using Efficient Environment Representation and Deep Learning



    Publication date :

    2021-01-01



    Type of media :

    Miscellaneous


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629 / 006



    Probabilistic Time-To-Lane-Change Prediction on Highways

    Wissing, Christian / Nattermann, Till / Glander, Karl-Heinz et al. | British Library Conference Proceedings | 2017


    Probabilistic time-to-lane-change prediction on highways

    Wissing, Christian / Nattermann, Till / Glander, Karl-Heinz et al. | IEEE | 2017


    Autonomous Vehicle Trajectory Prediction on Multi-Lane Highways Using Attention Based Model

    Sharma, Omveer / Sahoo, N. C. / Puhan, Niladri B. | IEEE | 2023


    Attention-Based Lane Change and Crash Risk Prediction Model in Highways

    Li, Zhen-Ni / Huang, Xing-Hui / Mu, Tong et al. | IEEE | 2022


    DeepTrack: Lightweight Deep Learning for Vehicle Trajectory Prediction in Highways

    Katariya, Vinit / Baharani, Mohammadreza / Morris, Nichole et al. | IEEE | 2022