Origami has been a source of inspiration for the design of robots because it can be easily produced using 2D materials and its motions can be well quantified. However, most applications to date have utilised origami patterns for thin sheet materials with a negligible thickness. If the thickness of the material cannot be neglected, commonly known as the thick panel origami, the creases need to be redesigned. One approach is to place creases either on top or bottom surfaces of a sheet of finite thickness. As a result, spherical linkages in the zero-thickness origami are replaced by spatial linkages in the thick panel one, leading to a reduction in the overall degrees of freedom (DOFs). For instance, a waterbomb pattern for a zero-thickness sheet shows multiple DOFs while its thick panel counterpart has only one DOF, which significantly reduces the complexity of motion control. In this article, we present a robotic gripper derived from a unit that is based on the thick panel six-crease waterbomb origami. Four such units complete the gripper. Kinematically, each unit is a plane-symmetric Bricard linkage, and the gripper can be modelled as an assembly of Bricard linkages, giving it single mobility. A gripper prototype was made using 3D printing technology, and its motion was controlled by a set of tendons tied to a single motor. Detailed kinematic modelling was done, and experiments were carried out to characterise the gripper's behaviours. The positions of the tips on the gripper, the actuation force on tendons, and the grasping force generated on objects were analysed and measured. The experimental results matched well with the analytical ones, and the repeated tests demonstrate that the concept is viable. Furthermore, we observed that the gripper was also capable of grasping non-symmetrical objects, and such performance is discussed in detail in the paper.


    Access

    Download


    Export, share and cite



    Title :

    A 3D-printable robotic gripper based on thick panel origami


    Contributors:
    Liu, C (author) / Maiolino, P (author) / You, Z (author)

    Publication date :

    2022-03-09



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629



    Deployment dynamics of thick panel Miura-origami

    Wang, Cheng / Zhang, Dawei / Li, Junlan et al. | Elsevier | 2023


    Robotic origami

    Niu, Jianxing / Peng, Tess / Wang, Vicky | BASE | 2013

    Free access

    Robotic gripper mechanism

    MALSTROM CHARLES RANDALL / SOLANKI SWAPNILSINH | European Patent Office | 2017

    Free access

    Viselike Robotic Gripper

    Vranish, John M. | NTRS | 1991


    Rolling-Friction Robotic Gripper

    Vranish, John M. | NTRS | 1992