A planetary exploration rover's ability to detect the type of supporting surface is critical to the successful accomplishment of the planned task, especially for long-range and long-duration missions. This paper presents a general approach to endow a robot with the ability to sense the terrain being traversed. It relies on the estimation of motion states and physical variables pertaining to the interaction of the vehicle with the environment. First, a comprehensive proprioceptive feature set is investigated to evaluate the informative content and the ability to gather terrain properties. Then, a terrain classifier is developed grounded on Support Vector Machine (SVM) and that uses an optimal proprioceptive feature set. Following this rationale, episodes of high slippage can be also treated as a particular terrain type and detected via a dedicated classifier. The proposed approach is tested and demonstrated in the field using SherpaTT rover, property of DFKI (German Research Center for Artificial Intelligence), that uses an active suspension system to adapt to terrain unevenness.


    Access

    Download


    Export, share and cite



    Title :

    Terrain estimation for planetary exploration robots



    Publication date :

    2020-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Human Assistant Planetary Exploration Robots

    Hirsh, R. L. / Graham, J. S. / Rochlis, J. L. et al. | British Library Conference Proceedings | 2006


    Human Assistant Planetary Exploration Robots

    Hirsh, R. L. / Graham, J. S. / Rochlis, J. L. et al. | British Library Conference Proceedings | 2006


    Mobile robots for planetary exploration

    Schilling, K. / Jungius, C. | Tema Archive | 1996


    Reconfigurable robots for all terrain exploration

    Schenker, P. S. / Pirjanian, P. / Balaram, B. et al. | NTRS | 2001


    Human Assistant Planetary Exploration Robots

    Hirsh, Robert L. / Graham, Jeffrey S. / Rochlis, Jennifer L. et al. | ASCE | 2006