Joint kinematics has been suggested to play an important role in the initiation and progression of a number of musculoskeletal pathologies. Thus, investigation of joint kinematics can help clinicians and researchers to better understand musculoskeletal conditions such as osteoarthritis and trochanteric bursitis. Existing motion capture technologies used in clinical settings suffer from various limitations, including soft tissue artefact. These limitations result in a lengthy examination process, an incomplete movement description, or an inaccurate representation of the real bony landmarks. The recent introduction of a motion analysis with ultrasound (MAUS) system aimed to provide a less constrained approach to detect actual bony structures and describe joint kinematics in three dimensional (3D) space. However, the accuracy of the original MAUS system was highly dependent on the operator's experience. In this doctoral thesis, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system is developed to track underlying bony landmarks and describe hip joint kinematics during gait. The key contribution of this thesis is to combine state-of-the-art computer vision approaches with the original MAUS system to improve the speed, accuracy and repeatability of joint kinematics examination for clinical measurement and diagnosis. Firstly, a comprehensive review of gait analysis and relevant clinical diagnostic modalities is presented. Then, an augmented MAUS system architecture is presented, which is more flexible than the previous MAUS system of the data acquisition. It combines an optoelectronic motion analysis (MA) system with a 2D ultrasound (US) device to build up a 3D representation of the bony structure of interest. A novel calibration box with multiple functions for the augmented MAUS system is designed to spatially and temporally match US images to the motion analysis data. The average Euclidean distance error of the spatial calibration is found to be 0.34 mm and the accuracy of the ...
A computer-aided tracking and motion analysis with ultrasound system for describing hip joint kinematics
2017-01-18
Theses
Electronic Resource
English
DDC: | 629 |
Computer-Aided-Kinematics for mechanical system dynamics
Automotive engineering | 1992
|Computer aided manual tracking
NTRS | 1981
|Springer Verlag | 2021
|Gasket joint analysis using computer aided engineering techniques
Automotive engineering | 1992
|Gasketed Joint Analysis Using Computer Aided Engineering Techniques
SAE Technical Papers | 1992
|