The most general motion of a rigid body B in a global frame G is made by a rotation ϕ about an axis û \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat {u}$$ \end{document}, plus a displacement d. Kinematically, the rigid body motion may be expressed by a 3 × 3 rotation matrix plus a 3 × 1 displacement vector. It may also be expressed by a 4 × 4 homogenous transformation matrix. This chapter will review all methods to express rigid body motions. Every rigid body represents a link of a robot.

    Arbitrary motion of a body B with respect to another body G is called rigid body motion and can be expressed by a rotation GRBBr plus a translation Gd. The vector Gd is translation of B with respect to G, and GRB is the rotation transformation matrix to map Br to Gr when Gd = 0. The screw motion š ( h , ϕ , û , s ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\check {s}(h,\phi ,\hat {u},\mathbf {s})$$ \end{document} is indicated by screw parameters: a unit vector on the axis of rotation û \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat {u}$$ \end{document}, a location vector s, a twist angle ϕ, and a translation h (or pitch p). The location vector s indicates the global position of a point on the screw axis. When s = 0, then û \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat {u}$$ \end{document} passes through the origin of the coordinate frame and the screw motion is called a central screw š ( h , ϕ , û ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\check {s}(h,\phi ,\hat {u})$$ \end{document}. Every screw motion can be decomposed into three principal central screws about the three axes of the coordinate frame G.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Motion Kinematics


    Contributors:

    Published in:

    Theory of Applied Robotics ; Chapter : 4 ; 149-224


    Publication date :

    2021-12-08


    Size :

    76 pages




    Type of media :

    Article/Chapter (Book)


    Type of material :

    Electronic Resource


    Language :

    English




    Kinematics of Ship Motion

    Perez, T. / Fossen, T.I. | Springer Verlag | 2005


    Optimal Motion-Cueing Algorithm Using Motion System Kinematics

    Aminzadeh, M. / Mahmoodi, A. / Sabzehparvar, M. | British Library Online Contents | 2012


    RAPID ORBITAL MOTION EMULATOR (ROME): KINEMATICS

    Seleit, Ahmed E. / Ketzner, Ryan / Quebedeaux, Hunter et al. | TIBKAT | 2020


    Rapid Orbital Motion Emulator (ROME): Kinematics

    Seleit, Ahmed E. / Ketzner, Ryan / Quebedeaux, Hunter et al. | AIAA | 2020


    The Kinematics and Dynamics of Aircraft Motion

    Stevens, Brian L. / Lewis, Frank L. / Johnson, Eric N. | Wiley | 2015