Non-holonomic wheeled robots (NWR) comprise a type of robotic system; they use wheels for movement and offer several advantages over other types. They are efficient, highly, and maneuverable, making them ideal for factory automation, logistics, transportation, and healthcare. The control of this type of robot is complicated, due to the complexity of modeling, asymmetrical non-holonomic constraints, and unknown perturbations in various applications. Therefore, in this study, a novel type-3 (T3) fuzzy logic system (FLS)-based controller is developed for NWRs. T3-FLSs are employed for modeling, and the modeling errors are considered in stability analysis based on the symmetric Lyapunov function. An observer is designed to detect the error, and its effect is eliminated by a developed terminal sliding mode controller (SMC). The designed technique is used to control a case-study NWR, and the results demonstrate the good accuracy of the developed scheme under non-holonomic constraints, unknown dynamics, and nonlinear disturbances.
An observer-based type-3 fuzzy control for non-holonomic wheeled robots
2023-01-01
Article (Journal)
Electronic Resource
English
DDC: | 629 |
Fuzzy parking manoeuvres of wheeled mobile robots
Tema Archive | 2007
|Springer Verlag | 2025
|LOW COST COLLISION AVOIDANCE SYSTEM ON HOLONOMIC AND NON- HOLONOMIC MOBILE ROBOTS
BASE | 2019
|Inversion-based Control of Wheeled Mobile Robots
British Library Conference Proceedings | 2003
|