The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics. Copyright:


    Access

    Download


    Export, share and cite



    Title :

    Advantages of task-specific multi-objective optimisation in evolutionary robotics


    Contributors:

    Publication date :

    2015-08-21


    Remarks:

    Trianni , V & López-Ibánez , M 2015 , ' Advantages of task-specific multi-objective optimisation in evolutionary robotics ' PLoS ONE , vol 10 , no. 8 , e0136406 . DOI:10.1371/journal.pone.0136406



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Combining Environment-Driven Adaptation and Task-Driven Optimisation in Evolutionary Robotics

    Haasdijk, E.W. / Bredeche, Nicolas / Eiben, A.E. | BASE | 2014

    Free access


    Robust Multi-Objective AeroStructural Optimisation Using Advanced Evolutionary Algorithms

    Lee, D. / Periaux, J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2009


    Multi-objective Optimisation of Multi-robot Task Allocation with Precedence Constraints

    Panchu K., Padmanabhan / Rajmohan, M. / Sundar, R. et al. | BASE | 2018

    Free access

    Multi-Objective Robust Design Optimisation Using Hierarchical Asynchronous Parallel Asynchronous Evolutionary Algorithms

    Lee, DongSeop / Gonzalez, Luise Felipe / Srinivas, Karkenahalli et al. | AIAA | 2007