Efficacy of the multi-robot systems depends on proper sequencing and optimal allocation of robots to the tasks. Focuses on deciding the optimal allocation of set-of-robots to a set-of-tasks with precedence constraints considering multiple objectives. Taguchi’s design of experiments based parameter tuned genetic algorithm (GA) is developed for generalised task allocation of single-task robots to multi-robot tasks. The developed methodology is tested for 16 scenarios by varying the number of robots and number of tasks. The scenarios were tested in a simulated environment with a maximum of 20 robots and 40 multi-robot foraging tasks. The tradeoff between performance measures for the allocations obtained through GA for different task levels was used to decide the optimal number of robots. It is evident that the tradeoffs occur at 20 per cent of performance measures and the optimal number of robot varies between 10 and 15 for almost all the task levels. This method shows good convergence and found that the precedence constraints affect the optimal number of robots required for a particular task level.


    Access

    Download


    Export, share and cite



    Title :

    Multi-objective Optimisation of Multi-robot Task Allocation with Precedence Constraints


    Contributors:

    Publication date :

    2018-03-13


    Remarks:

    doi:10.14429/dsj.68.11187
    Defence Science Journal; Vol 68 No 2; 175-182 ; 0976-464X ; 0011-748X



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629