Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.
Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions
ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2016 ; La Rochelle, France
AIP Conference Proceedings ; 1798 , 1
2017-01-27
10 pages
Conference paper
Electronic Resource
English
Optimization of interplanetary flights with vehicles of low thrust acceleration
Engineering Index Backfile | 1963
|Optimization methods of near-Earth and interplanetary flights with low thrust
American Institute of Physics | 2017
|Approximate finite-thrust trajectory optimization.
AIAA | 1969
|