An extensive series of diagnostic measurements was carried out on an urban rail propulsion system of the type that was found to have the greatest community noise impact. At high speed, 3000 to 4000 rpm, the fan dominates all other sources by 10-15 dBA. At low speed, 1000 to 1500 rpm, fan, gears, and drive motors make comparable noise. A series of tests on a laboratory model of the fan/end housing of a Westinghouse 1447 propulsion motor showed that by modifying the geometry of the end housing posts and reducing the diameter of the cooling fan, the tone at the blade passage frequency was virtually eliminated. In addition, the overall noise was reduced by over 10 dBA while the same airflow was maintained through the fan. When these treatments were applied to the motor itself, it was possible to maintain the same airflow as in the unmodified motor by redesigning the grill over the inlet at the commutator end of the motor. Noise reductions, however, were not as significant as in the laboratory model. Although the blade passage tone was vitually eliminated, overall noise reduction was in the 3 to 6 dBA range, depending on the combination of treatments used.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Control of rapid transit propulsion system noise


    Weitere Titelangaben:

    Geraeuschminderung bei schnellen Nahverkehrssystemen


    Beteiligte:
    Remington, P.J. (Autor:in) / Dixon, N.R. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    1983


    Format / Umfang :

    8 Seiten, 11 Bilder, 4 Tabellen, 5 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch