Health state prediction and fault time prediction are pivotal in fault prognostics. Traditional approaches often treat these tasks separately, overlooking the time-varying dynamics of system operations, which compromises efficiency and accuracy. To address this, we propose a Gaussian Process Regression (GPR) method with an adaptive update strategy tailored for aeroengine prognostics. This approach continuously refines model parameters and predictive distributions using new data. By integrating variable selection and multivariable fusion, it identifies key health-related variables to construct a comprehensive health index, enabling simultaneous health state and fault time prediction. The method employs single-point and multipoint update strategies within a unified GPR framework, effectively incorporating new sample data for dual-task predictions. Experimental results on the C-MAPSS dataset demonstrate that the proposed method outperforms state-of-the-art techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Update-Strategy-Based Gaussian Processes Regression for Processes Fault Prediction with Incremental Data


    Weitere Titelangaben:

    eng. Applications of Computational Methods


    Beteiligte:
    Yin, Hongpeng (Autor:in) / Zhou, Han (Autor:in) / Chai, Yi (Autor:in) / Tang, Qiu (Autor:in)


    Erscheinungsdatum :

    16.04.2025


    Format / Umfang :

    21 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Relevant Variable Selection and SVDD for Processes Fault Detection with Incremental Redundant Data

    Yin, Hongpeng / Zhou, Han / Chai, Yi et al. | Springer Verlag | 2025


    Twin Gaussian Processes for Structured Prediction

    Bo, L. / Sminchisescu, C. | British Library Online Contents | 2010



    A Unified Fault Diagnosis Framework for Industrial Processes with Incremental Learning Ability

    Yin, Hongpeng / Zhou, Han / Chai, Yi et al. | Springer Verlag | 2025