This chapter addresses the issue of sample value imbalance in process monitoring by developing a fault detection approach that integrates variable selection and support vector data description (SVDD) for enhanced efficiency. Initially, KLD is employed as the variable selection algorithm to identify the most informative variables related to specific faults. These selected variables are then segmented into blocks to prevent fault information from being obscured within a single monitoring space, ensuring that relevant variables and critical information are concentrated within the same block. Subsequently, kernel principal component analysis is conducted within each block to manage the challenges posed by high-dimensional and nonlinear variables. The monitoring outcomes are derived using the proposed SVDD, which incorporates a restructured radius index that exhibits heightened sensitivity to faults. Experimental results on the Tennessee Eastman process demonstrate the efficacy of this method, highlighting its superior mean fault detection rate compared to existing approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Relevant Variable Selection and SVDD for Processes Fault Detection with Incremental Redundant Data


    Weitere Titelangaben:

    eng. Applications of Computational Methods


    Beteiligte:
    Yin, Hongpeng (Autor:in) / Zhou, Han (Autor:in) / Chai, Yi (Autor:in) / Tang, Qiu (Autor:in)


    Erscheinungsdatum :

    16.04.2025


    Format / Umfang :

    19 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault Monitoring of Batch Process Based on Moving Window SVDD

    Xie, Yanhong / Sun, Chengao / Li, Yuan | British Library Online Contents | 2015



    Redundant IMU Fault Detection

    Li, Xuefeng / Xu, Fan / Xu, Guoqiang | Springer Verlag | 2022


    PCA-SVDD-based production line lifting appliance intelligent fault diagnosis method and system

    TENG RAN / HAO YUNRUI / XU CHI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Abnormality detection via SVDD technique of motor-generator system in HEV

    Na, S. G. / Yang, I. B. / Heo, H. | Online Contents | 2014