In the context of spatial-temporal autonomous driving, the accurate and real-time trajectory prediction of the surrounding vehicle (SV) is crucial. This paper aims to design an efficient, accurate, and interpretable unimodal trajectory prediction approach. To achieve this objective, we employ Sparse Gaussian Process Regression (SGPR), which enables large dataset learning and efficient inference of future trajectories. This approach ensures accurate predictions while maintaining high computational efficiency. To further enhance the robustness of the prediction module, we propose the translation and rotation transformation strategy, which effectively simplifies the prediction problem. Additionally, we utilize an instant evaluation algorithm to assess the prediction performance and maintain a streaming dataset for incremental learning, capable of adapting to dynamic driving environments. In our experimental evaluation, we compare our proposed trajectory prediction approach with a series of existing methods. The results demonstrate that our work achieves superior prediction accuracy while requiring less inference time. It is noteworthy that, the proposed SGPR-based trajectory prediction approach with rotation equivalence is able to swiftly infer and incrementally learn from dynamic environments, which makes it a promising tool for enhancing safety and efficiency in autonomous driving systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Incremental Learning-Based Real-Time Trajectory Prediction for Autonomous Driving via Sparse Gaussian Process Regression


    Beteiligte:
    Liu, Haichao (Autor:in) / Chen, Kai (Autor:in) / Ma, Jun (Autor:in)


    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    3582893 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Trajectory-Based Failure Prediction for Autonomous Driving

    Kuhn, Christopher B. / Hofbauer, Markus / Petrovic, Goran et al. | British Library Conference Proceedings | 2021


    Trajectory-Based Failure Prediction for Autonomous Driving

    Kuhn, Christopher B. / Hofbauer, Markus / Petrovic, Goran et al. | IEEE | 2021


    VEHICLE TRAJECTORY PREDICTION WITH GAUSSIAN PROCESS REGRESSION IN CONNECTED VEHICLE ENVIRONMENT

    Goli, Sepideh Afkhami / Far, Behrouz H. / Fapojuwo, Abraham O. | British Library Conference Proceedings | 2018


    Learning Homotopy Prediction for Optimization-Based Trajectory Planners for Autonomous Driving

    Syamil, Abi Rahman / Kum, Dongsuk | Springer Verlag | 2025

    Freier Zugriff