As one of the staple horticultural crops, Shallot requires accurate monitoring to understand its cultivation better and to face environmental challenges in lowland regions. Nevertheless, there are still limited studies on mapping shallot agriculture using remote sensing data. In this study, we aimed to enhance the accuracy and efficiency of mapping shallot cultivation in lowland areas by leveraging high-resolution Sentinel-2 imagery combined with machine-learning techniques, specifically Random Forest, to classify the cultivation areas accurately. Preprocessed Sentinel-2 data using Google Earth Engine and validation data from field surveys and high-resolution satellite imagery inspection are utilized to create training and testing datasets for the machine learning model. Our findings reveal that the Random Forest model resulted in an Overall Accuracy of 88% and a total area of 12,121 hectares in July 2023. The proposed method can be used to estimate the planting and harvested area regularly to support smart-climate agriculture.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mapping Shallot in Lowland Areas Through Sentinel-2 Imagery and Machine Learning Approach


    Weitere Titelangaben:

    Springer Proceedings Phys.


    Beteiligte:
    Fitrianingsih, Ery (Herausgeber:in) / Muhamad, Johan (Herausgeber:in) / Jenie, Yazdi Ibrahim (Herausgeber:in) / Widodo, Joko (Herausgeber:in) / Arifandri, Robby (Autor:in) / Karolinoerita, Vicca (Autor:in) / Ramadhani, Fadhlullah (Autor:in) / Dirgahayu, Dede (Autor:in) / Devy, Lukita (Autor:in) / Habibie, Muhammad Iqbal (Autor:in) ... [mehr]

    Kongress:

    International Seminar on Aerospace Science and Technology ; 2024 ; Bali, Indonesia September 17, 2024 - September 17, 2024



    Erscheinungsdatum :

    15.02.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Lightweight robot limb and leg structure simulating shallot tibia

    WEN KANG / LI XIANG / YANG XIANYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    On the Effectiveness of Sentinel-2 Data for Land-Cover Mapping: Comparison with Landsat and SPOT Imagery

    Buchholz, T. / Marconcini, M. / Fernandez-Prieto, D. | British Library Conference Proceedings | 2012


    Automated Marine Debris Detection from Sentinel-2 Satellite Imagery

    R., Priyadarshini / Arya, Varun / S., Sowmya Kamath | IEEE | 2024


    Deep Learning on Sentinel-1 SAR Imagery for Ship Detection Using YOLO-V8 Model

    Javed, Malik Ahmad / Naseer, Ehtasham / Siddique, Muhammad Adnan | IEEE | 2024