Marine debris present a severe, escalating threat to oceans and coastal ecosystems, requiring effective monitoring and detection. This work proposes an automated marine debris detection system utilizing satellite imagery data from the MARIDA dataset, sourced from Sentinel-2. Advanced AI techniques are leveraged to analyze high-resolution satellite imagery, and the models are trained to facilitate the identification/tracking of marine debris across various water bodies. Experiments reveal that the machine learning models form a robust baseline, while the UNet model achieves improved precision. The proposed Attention-activated UNet model achieved the best performance, particularly in challenging conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automated Marine Debris Detection from Sentinel-2 Satellite Imagery


    Beteiligte:
    R., Priyadarshini (Autor:in) / Arya, Varun (Autor:in) / S., Sowmya Kamath (Autor:in)


    Erscheinungsdatum :

    22.07.2024


    Format / Umfang :

    1008815 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Using Multispectral UAV Imagery for Marine Debris Detection in Sri Lanka

    Velayuthan, Purushoth / Piyathilake, Vinuri / Athapaththu, Kavinda et al. | IEEE | 2023




    Post-Hurricane Vegetative Debris Assessment Using Spectral Indices Derived from Satellite Imagery

    Karaer, Alican / Ulak, Mehmet Baran / Abichou, Tarek et al. | Transportation Research Record | 2021


    INTELLIGENT HELIPAD DETECTION FROM SATELLITE IMAGERY

    Specht, D. / Rasool, G. / Bouaynaya, N. et al. | British Library Conference Proceedings | 2021