Forecasting the scalable future states of surrounding traffic participants in complex traffic scenarios is a critical capability for autonomous vehicles, as it enables safe and feasible decision-making. Recent successes in learning-based prediction and planning have introduced two primary challenges: generating accurate joint predictions for the environment and integrating prediction guidance for planning purposes. To address these challenges, we propose a two-stage integrated neural planning framework, termed OPGP, that incorporates joint prediction guidance from occupancy forecasting. The preliminary planning phase simultaneously outputs the predicted occupancy for various types of traffic actors based on imitation learning objectives, taking into account shared interactions, scene context, and actor dynamics within a unified Transformer structure. Subsequently, the transformed occupancy prediction guides optimization to further inform safe and smooth planning under Frenet coordinates. We train our planner using a large-scale, real-world driving dataset and validate it in open-loop configurations. Our proposed planner outperforms strong learning-based methods, exhibiting improved performance due to occupancy prediction guidance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Occupancy Prediction-Guided Neural Planner for Autonomous Driving


    Beteiligte:
    Liu, Haochen (Autor:in) / Huang, Zhiyu (Autor:in) / Lv, Chen (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    679281 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Goal-directed occupancy prediction for autonomous driving

    MARCHETTI-BOWICK MICOL / KANIARASU POORNIMA / HAYNES GALEN CLARK | Europäisches Patentamt | 2022

    Freier Zugriff

    Goal-Directed Occupancy Prediction for Autonomous Driving

    MARCHETTI-BOWICK MICOL / KANIARASU POORNIMA / HAYNES GALEN CLARK | Europäisches Patentamt | 2021

    Freier Zugriff


    NMPC trajectory planner for urban autonomous driving

    Micheli, F. / Bersani, M. / Arrigoni, S. et al. | Taylor & Francis Verlag | 2023

    Freier Zugriff

    LLM-BASED HYBRID PLANNER FOR AUTONOMOUS DRIVING

    CHANDRAKER MANMOHAN / PITTALUGA FRANCESCO / GOPALKRISHNA VIJAY KUMAR BAIKAMPADY et al. | Europäisches Patentamt | 2025

    Freier Zugriff