Recent advances in digital twin and parallel intelligence (DTPI) enable the mapping of the physical world to a high-fidelity virtual representation and facilitate intelligent prediction and decision-making for autonomous vehicles and intelligent transportation systems. In the context of DTPI, in this study, we investigate trajectory-prediction-enabled motion planning for autonomous vehicles using deep neural networks. We first implement a motion planner using a neural network as an approximation of traditional planners. The inputs to the baseline planner include the current states of the ego and its surrounding agents and a shared map. The planner produces a five-second trajectory for the ego vehicle considering the current situation. Subsequently, we generalize the baseline to consider the historical states of the ego and its surrounding agents. Using the generalized planner, we investigate the impacts of the history horizon on planning performance. We next investigate how the future motions of the surrounding agents of the ego affect the planner and observe improvement in planning. This demonstrates that knowledge of the future trajectories of other agents is useful for planning. However, we do not have access to ground-truth future motions for inference. Finally, we investigate how the future can be approximated through prediction and how the prediction quality affects planning performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predictive Neural Motion Planner for Autonomous Driving Using Graph Networks


    Beteiligte:
    Mo, Xiaoyu (Autor:in) / Lv, Chen (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.2023


    Format / Umfang :

    3284615 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Occupancy Prediction-Guided Neural Planner for Autonomous Driving

    Liu, Haochen / Huang, Zhiyu / Lv, Chen | IEEE | 2023


    HYBRID MOTION PLANNER FOR AUTONOMOUS VEHICLES

    LIU BUYU / PITTALUGA FRANCESCO / ZHUANG BINGBING et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    TRAJECTORY PLANNER FOR AUTONOMOUS DRIVING USING BÉZIER CURVES

    JAFARI TAFTI SAYYED ROUHOLLAH / MEHDI SYED B / PALANISAMY PRAVEEN | Europäisches Patentamt | 2018

    Freier Zugriff

    Trajectory planner for autonomous driving using bézier curves

    JAFARI TAFTI SAYYED ROUHOLLAH / MEHDI SYED B / PALANISAMY PRAVEEN | Europäisches Patentamt | 2019

    Freier Zugriff

    HYBRID MOTION PLANNER FOR AUTONOMOUS VEHICLES

    LIU BUYU / PITTALUGA FRANCESCO / ZHUANG BINGBING et al. | Europäisches Patentamt | 2025

    Freier Zugriff