The urban environment is amongst the most difficult domains for autonomous vehicles. The vehicle must be able to plan a safe route on challenging road layouts, in the presence of various dynamic traffic participants such as vehicles, cyclists and pedestrians and in various environmental conditions. The challenge remains to have motion planners that are computationally fast and that account for future movements of other road users proactively. This paper describes an computationally efficient sampling-based trajectory planner for safe and comfortable driving in urban environments. The planner improves the Stable-Sparse-RRT algorithm by adding initial exploration branches to the search tree based on road layout information and reiterating the previous solution. Furthermore, the trajectory planner accounts for the predicted motion of other traffic participants to allow for safe driving in urban traffic. Simulation studies show that the planner is capable of planning collision-free, comfortable trajectories in several urban traffic scenarios. Adding the domain-knowledge-based exploration branches increases the efficiency of exploration of highly interesting areas, thereby increasing the overall planning performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Informed sampling-based trajectory planner for automated driving in dynamic urban environments


    Beteiligte:
    Smit, Robin (Autor:in) / van der Ploeg, Chris (Autor:in) / Teerhuis, Arjan (Autor:in) / Silvas, Emilia (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    1711749 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    NMPC trajectory planner for urban autonomous driving

    Micheli, F. / Bersani, M. / Arrigoni, S. et al. | Taylor & Francis Verlag | 2023

    Freier Zugriff


    Dynamic motion planner with trajectory optimisation for automated highway lane‐changing driving

    Liu, Xiao / Liang, Jun / Zhang, Hua | Wiley | 2020

    Freier Zugriff

    An Ad-hoc Sampling-based Planner for On-road Automated Driving

    Lienke, Christian / Keller, Martin / Glander, Karl-Heinz et al. | IEEE | 2018