The paper at hand proposes a real-time capable approach to trajectory planning. An online sampling strategy is chosen, exploiting the structure of the surrounding environment. Lateral states are sampled from state space, whereas longitudinal states are generated via sampling from the action space. The combination yields breakpoints, which are then used to generate a candidate trajectory via spline interpolation. A bi-level candidate evaluation strategy is presented assessing comfort and human-like driving as well as a post-check of collision avoidance with accurate geometric modeling. The result is a reactive feedback motion planner, which shows promising results with respect to on-road automated driving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Ad-hoc Sampling-based Planner for On-road Automated Driving


    Beteiligte:


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    2079973 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Informed sampling-based trajectory planner for automated driving in dynamic urban environments

    Smit, Robin / van der Ploeg, Chris / Teerhuis, Arjan et al. | IEEE | 2022


    LATERAL MANEUVER PLANNER FOR AUTOMATED DRIVING SYSTEM

    NAGASAKA NAOKI / SAKAI KATSUHIRO / OKUMURA BUNYO et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Lateral maneuver planner for automated driving system

    NAGASAKA NAOKI / SAKAI KATSUHIRO / OKUMURA BUNYO et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    Lateral maneuver planner for automated driving system

    MASAHIRO HARADA / NAOKI NAGASAKA / NOBUHIDE KAMATA et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Self-configuring motion planner for automated vehicles based on human driving styles

    Medina-Lee, Juan / Artunedo, Antonio / Godoy, Jorge et al. | IEEE | 2024