Trajectory planning in the intersection is a challenging problem due to the strong uncertain intentions of surrounding agents. Conventional methods may fail in some corner cases when the ad-hoc parameters or predictions do not match the real traffic. This paper proposes a trajectory planning method, adaptive to the uncertain interactions, called Value-Estimation-Guild (VEG) trajectory planner. The method builds on the Frenét frame trajectory planner, in the meantime, uses the deep reinforcement learning to deal with the high uncertainty. The deep reinforcement learning learns from past failures and adjusts the sample direction of the optimal planner under the Frenét frame. In this way, the generated trajectory can be partially optimal and adapt to the stochastic as well. This method drives the automated vehicle through intersections and completes the unprotected left turn mission. During the testing, traffic density, surrounding vehicles’ types, and intentions are all generated randomly. The statistics results show that the proposed trajectory planner works well under high uncertainty. It helps the automatic vehicles to finish the unprotected left turn with a success rate of 94.4%, compared with the baseline method of 90%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Integrating Deep Reinforcement Learning with Optimal Trajectory Planner for Automated Driving


    Beteiligte:
    Zhou, Weitao (Autor:in) / Jiang, Kun (Autor:in) / Cao, Zhong (Autor:in) / Deng, Nanshan (Autor:in) / Yang, Diange (Autor:in)


    Erscheinungsdatum :

    20.09.2020


    Format / Umfang :

    2586416 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driving Planner for Freight Trains Using Reinforcement Learning

    Barros, Gabriel Jose Costa / Castro, Paulo Andre Lima de | Springer Verlag | 2025



    Dynamic motion planner with trajectory optimisation for automated highway lane‐changing driving

    Liu, Xiao / Liang, Jun / Zhang, Hua | Wiley | 2020

    Freier Zugriff

    INTEGRATING DEEP REINFORCEMENT LEARNING WITH MODEL-BASED PATH PLANNERS FOR AUTOMATED DRIVING

    Yurtsever, Ekim / Capita, Linda / Redmill, Keith et al. | British Library Conference Proceedings | 2020


    Integrating Deep Reinforcement Learning with Model-based Path Planners for Automated Driving

    Yurtsever, Ekim / Capito, Linda / Redmill, Keith et al. | IEEE | 2020