The robust and reliable detection of objects in the path of a vehicle is an important prerequisite for collision avoidance and collision mitigation systems. In this paper, an ego-motion compensated tracking approach is presented which combines radar observations with the results of a contour-based image processing algorithm. The approach is able to handle all uncertainties of the system in a unified way without analytical linearization by using the Unscented transform. By that, the covariances of the system can be estimated more accurately. The paper describes both the image processing and the state estimation algorithms. Furthermore, results of several practical tests are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radar and vision based data fusion - Advanced filtering techniques for a multi object vehicle tracking system


    Beteiligte:
    Richter, Eric (Autor:in) / Schubert, Robin (Autor:in) / Wanielik, Gerd (Autor:in)


    Erscheinungsdatum :

    01.06.2008


    Format / Umfang :

    463986 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object Tracking System With Radar/Vision Fusion For Automated Vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2017

    Freier Zugriff

    Multiple Object Tracking using Radar and Vision Sensor Fusion for Autonomous Vehicle

    Kurapati, Kishore Reddy / M, Suma / Chavan, Ameet | IEEE | 2020


    Object tracking system with radar/vision fusion for automated vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2020

    Freier Zugriff

    Advanced Filtering Techniques for Multisensor Vehicle Tracking

    Richter, E. / Schubert, R. / Wanielik, G. | British Library Conference Proceedings | 2008


    3D Multi-Object Tracking Based on Radar-Camera Fusion

    Lin, Zihao / Hu, Jianming | IEEE | 2022