Autonomous Vehicle (AV) employs multiple sensors to sense the surroundings and take decisions accordingly. The aim of the research presented in this paper is to design a sensor fusion and tracking algorithm that tracks the objects based on data fusion of RADAR and Camera. The developed algorithm helps in not only accurately identifying the objects but also determining object's position. The algorithm is tested on a testbed vehicle by fusing RADAR and Vision sensor data. The clutters in RADAR data are detected and removed thus increasing reliability. To avoid the problem due to false data from the sensors, the sensor data is fed to an Interactive Multiple Model (IMM)filter comprising of three Kalman filter. Fusion analysis data shows that the designed IMM filter gives better results as compared to a single Kalman filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple Object Tracking using Radar and Vision Sensor Fusion for Autonomous Vehicle


    Beteiligte:
    Kurapati, Kishore Reddy (Autor:in) / M, Suma (Autor:in) / Chavan, Ameet (Autor:in)


    Erscheinungsdatum :

    06.11.2020


    Format / Umfang :

    767622 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    IMMPDA Vehicle Tracking System Using Asynchronous Sensor Fusion of Radar and Vision

    Liu, F. / Sparbert, J. / Stiller, C. | British Library Conference Proceedings | 2008


    IMMPDA vehicle tracking system using asynchronous sensor fusion of radar and vision

    Feng Liu, / Sparbert, Jan / Stiller, Christoph | IEEE | 2008


    Object Tracking System With Radar/Vision Fusion For Automated Vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2017

    Freier Zugriff

    Object tracking system with radar/vision fusion for automated vehicles

    SCHIFFMANN JAN K | Europäisches Patentamt | 2020

    Freier Zugriff