The Poisson multi-Bernoulli mixture (PMBM) density is a conjugate multitarget density for the standard point target model with Poisson point process birth. This means that both the filtering and predicted densities for the set of targets are PMBM. In this article, we first show that the PMBM density is also conjugate for sets of trajectories with the standard point target measurement model. Second, based on this theoretical foundation, we develop two trajectory PMBM filters that provide recursions to calculate the posterior density for the set of all trajectories that have ever been present in the surveillance area, and the posterior density of the set of trajectories present at the current time step in the surveillance area. These two filters, therefore, provide complete probabilistic information on the considered trajectories enabling optimal trajectory estimation. Third, we establish that the density of the set of trajectories in any time window, given the measurements in a possibly different time window, is also a PMBM. Finally, the trajectory PMBM filters are evaluated via simulations, and are shown to yield State-of-the-Art performance compared to other multitarget tracking algorithms based on random finite sets and multiple hypothesis tracking.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poisson Multi-Bernoulli Mixtures for Sets of Trajectories


    Beteiligte:


    Erscheinungsdatum :

    01.04.2025


    Format / Umfang :

    2013891 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Data-Driven Clustering and Bernoulli Merging for the Poisson Multi-Bernoulli Mixture Filter

    Fontana, Marco / Garcia-Fernandez, Angel F. / Maskell, Simon | IEEE | 2023


    Poisson Multi-Bernoulli Approximations for Multiple Extended Object Filtering

    Xia, Yuxuan / Granstrom, Karl / Svensson, Lennart et al. | IEEE | 2022


    Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation

    Garcia-Fernandez, Angel F. / Williams, Jason L. / Granstrom, Karl et al. | IEEE | 2018


    Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering

    Granstrom, Karl / Fatemi, Maryam / Svensson, Lennart | IEEE | 2020


    Multisensor Poisson Multi-Bernoulli Filter for Joint Target–Sensor State Tracking

    Frohle, Markus / Lindberg, Christopher / Granstrom, Karl et al. | IEEE | 2019