This article proposes a clustering and merging approach for the Poisson multi-Bernoulli mixture (PMBM) filter to lower its computational complexity and make it suitable for multiple target tracking with a high number of targets. We define a measurement-driven clustering algorithm to reduce the data association problem into several subproblems, and we provide the derivation of the resulting clustered PMBM posterior density via Kullback–Leibler divergence minimization. Furthermore, we investigate different strategies to reduce the number of single target hypotheses by approximating the posterior via merging and intertrack swapping of Bernoulli components. We evaluate the performance of the proposed algorithm on simulated tracking scenarios with more than 1000 targets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data-Driven Clustering and Bernoulli Merging for the Poisson Multi-Bernoulli Mixture Filter


    Beteiligte:


    Erscheinungsdatum :

    01.10.2023


    Format / Umfang :

    1738006 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation

    Garcia-Fernandez, Angel F. / Williams, Jason L. / Granstrom, Karl et al. | IEEE | 2018


    Sensor Management for Search and Track Using the Poisson Multi-Bernoulli Mixture Filter

    Bostrom-Rost, Per / Axehill, Daniel / Hendeby, Gustaf | IEEE | 2021


    A Gaussian Mixture Extended-Target Multi-Bernoulli Filter

    Zhang, G. / Lian, F. / Han, C. et al. | British Library Online Contents | 2014


    Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering

    Granstrom, Karl / Fatemi, Maryam / Svensson, Lennart | IEEE | 2020