We provide a derivation of the Poisson multi-Bernoulli mixture (PMBM) filter for multitarget tracking with the standard point target measurements without using probability generating functionals or functional derivatives. We also establish the connection with the $\delta$ -generalized labeled multi-Bernoulli ($\delta$ -GLMB) filter, showing that a $\delta$-GLMB density represents a multi-Bernoulli mixture with labeled targets so it can be seen as a special case of PMBM. In addition, we propose an implementation for linear/Gaussian dynamic and measurement models and how to efficiently obtain typical estimators in the literature from the PMBM. The PMBM filter is shown to outperform other filters in the literature in a challenging scenario.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poisson Multi-Bernoulli Mixture Filter: Direct Derivation and Implementation


    Beteiligte:


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    702647 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Data-Driven Clustering and Bernoulli Merging for the Poisson Multi-Bernoulli Mixture Filter

    Fontana, Marco / Garcia-Fernandez, Angel F. / Maskell, Simon | IEEE | 2023


    Sensor Management for Search and Track Using the Poisson Multi-Bernoulli Mixture Filter

    Bostrom-Rost, Per / Axehill, Daniel / Hendeby, Gustaf | IEEE | 2021



    Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering

    Granstrom, Karl / Fatemi, Maryam / Svensson, Lennart | IEEE | 2020


    A Gaussian Mixture Extended-Target Multi-Bernoulli Filter

    Zhang, G. / Lian, F. / Han, C. et al. | British Library Online Contents | 2014