This paper proposes a novel approach to visual tracking of moving objects based on the dynamic coupled conditional random field (DcCRF) model. The principal idea is to integrate a variety of relevant knowledge about object tracking into a unified dynamic probabilistic framework, which is called the DcCRF model in this paper. Under this framework, the proposed approach integrates spatiotemporal contextual information of motion and appearance, as well as the compatibility between the foreground label and object label. An approximate inference algorithm, i.e., loopy belief propagation, is adopted to conduct the inference. Meanwhile, the background model is adaptively updated to deal with gradual background changes. Experimental results show that the proposed approach can accurately track moving objects (with or without occlusions) in monocular video sequences and outperforms some state-of-the-art methods in tracking and segmentation accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual Tracking Based on Dynamic Coupled Conditional Random Field Model


    Beteiligte:
    Liu, Yuqiang (Autor:in) / Wang, Kunfeng (Autor:in) / Shen, Dayong (Autor:in)


    Erscheinungsdatum :

    01.03.2016


    Format / Umfang :

    1811760 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Visual vehicle tracking based on conditional random fields

    Yuqiang Liu / Kunfeng Wang / Fei-Yue Wang | IEEE | 2014


    Tracking with a mixed continuous-discrete Conditional Random Field

    Pellegrini, S. / Van Gool, L. | British Library Online Contents | 2013


    Condensation - Conditional Density Propagation for Visual Tracking

    Blake, A. / Isard, M. | British Library Online Contents | 1998