This paper presents a dynamic conditional random field (DCRF) model to integrate contextual constraints for object segmentation in image sequences. Spatial and temporal dependencies within the segmentation process are unified by a dynamic probabilistic framework based on the conditional random field (CRF). An efficient approximate filtering algorithm is derived for the DCRF model to recursively estimate the segmentation field from the history of video frames. The segmentation method employs both intensity and motion cues, and it combines dynamic information and spatial interaction of the observed data. Experimental results show that the proposed approach effectively fuses contextual constraints in video sequences and improves the accuracy of object segmentation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A dynamic conditional random field model for object segmentation in image sequences


    Beteiligte:
    Yang Wang, (Autor:in) / Qiang Ji, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    246783 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improved hierarchical conditional random field model for object segmentation

    Wang, L. L. / Yung, N. H. | British Library Online Contents | 2015




    Visual Tracking Based on Dynamic Coupled Conditional Random Field Model

    Liu, Yuqiang / Wang, Kunfeng / Shen, Dayong | IEEE | 2016